Geographic Artificial Intelligence and Unmanned Aerial Vehicles Application for Correlation Analysis of Settlement Density and Land Surface Temperature in Panggang Island Jakarta

Abstract Views: 352   PDF Downloads: 301

Authors

  • Stewart Pertuack Universitas Amikom Yogyakarta, Yogyakarta
  • Philia Christi Latue Herzen University, Saint Petersburg

DOI:

https://doi.org/10.56211/buana.v1i1.340

Keywords:

GeoAI; Land Surface Temperature; Panggang Island; UAV

Abstract

This research aims to understand the relationship between high settlement density and land surface temperature associated with the Urban Heat Island (UHI) phenomenon. The data processing method involves collecting settlement density data using UAVs equipped with thermal sensors, as well as using GeoAI, namely GEE, to analyze LST on Panggang Island. The results showed a positive relationship between settlement density and LST on Panggang Island, with high settlement density contributing to an increase in ground surface temperature. The benefits of the application of GeoAI and UAVs in this analysis include accurate mapping, understanding the impacts of urbanization, sustainable urban planning, and fact-based decision-making. It is hoped that this research can contribute to better urban management and reduction of environmental impacts in Pulau Panggang, DKI Jakarta.

Downloads

Download data is not yet available.

References

Achmadi, P. N., Dimyati, M., Manesa, M. D. M., & Rakuasa, H. (2023). MODEL PERUBAHAN TUTUPAN LAHAN BERBASIS CA-MARKOV: STUDI KASUS KECAMATAN TERNATE UTARA, KOTA TERNATE. Jurnal Tanah Dan Sumberdaya Lahan, 10(2), 451–460. https://doi.org/10.21776/ub.jtsl.2023.010.2.28

Achugbu, I. C., Olufayo, A. A., Balogun, I. A., Dudhia, J., McAllister, M., Adefisan, E. A., & Naabil, E. (2022). Potential effects of Land Use Land Cover Change on streamflow over the Sokoto Rima River Basin. Heliyon, 8(7), e09779. https://doi.org/10.1016/j.heliyon.2022.e09779

Albarqouni, M. M. Y., Yagmur, N., Bektas Balcik, F., & Sekertekin, A. (2022). Assessment of Spatio-Temporal Changes in Water Surface Extents and Lake Surface Temperatures Using Google Earth Engine for Lakes Region, Türkiye. ISPRS International Journal of Geo-Information, 11(7), 407. https://doi.org/10.3390/ijgi11070407

Andrio, A. (2019). Development of UAV technology in seed dropping for aerial revegetation practices in Indonesia. IOP Conference Series: Earth and Environmental Science, 308(1), 012051. https://doi.org/10.1088/1755-1315/308/1/012051

Arslan, J., Samarasinghe, G., Benke, K. K., Sowmya, A., Wu, Z., Guymer, R. H., & Baird, P. N. (2020). Artificial Intelligence Algorithms for Analysis of Geographic Atrophy: A Review and Evaluation. Translational Vision Science & Technology, 9(2), 57. https://doi.org/10.1167/tvst.9.2.57

Binta, O.M.F., & Sukojo, B. . (2017). Analisis Ketelitian Orthorektifikasi Citra Pleides dan SPOT6 Untuk Pembuatan Peta Dasar RDTR Wilayah Pesisir (Studi Kasus: Kecamatan Jenu, Tuban). Jurnal Teknik ITS, 6(2). https://doi.org/http://dx.doi.org/10.12962/j23373539.v6i2.23739

Bordogna, G., & Fugazza, C. (2022). Artificial Intelligence for Multisource Geospatial Information. ISPRS International Journal of Geo-Information, 12(1), 10. https://doi.org/10.3390/ijgi12010010

Çolak, E., & Sunar, F. (2023). Investigating the usefulness of satellite-retrieved land surface temperature (LST) in pre- and post-fire spatial analysis. Earth Science Informatics, 16(1), 945–963. https://doi.org/10.1007/s12145-022-00883-8

Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2019). Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environmental Monitoring and Assessment, 191(9), 551. https://doi.org/10.1007/s10661-019-7645-3

Ermida, S. L., Soares, P., Mantas, V., Göttsche, F.-M., & Trigo, I. F. (2020). Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sensing, 12(9), 1471. https://doi.org/10.3390/rs12091471

Gadekar, K., Pande, C. B., Rajesh, J., Gorantiwar, S. D., & Atre, A. A. (2023). Estimation of Land Surface Temperature and Urban Heat Island by Using Google Earth Engine and Remote Sensing Data (pp. 367–389). https://doi.org/10.1007/978-3-031-19059-9_14

Ghanbari, R., Heidarimozaffar, M., Soltani, A., & Arefi, H. (2023). Land surface temperature analysis in densely populated zones from the perspective of spectral indices and urban morphology. International Journal of Environmental Science and Technology, 20(3), 2883–2902. https://doi.org/10.1007/s13762-022-04725-4

Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625–636. https://doi.org/10.1080/13658816.2019.1684500

Jozaghi, A., Alizadeh, B., Hatami, M., Flood, I., Khorrami, M., Khodaei, N., & Ghasemi Tousi, E. (2018). A Comparative Study of the AHP and TOPSIS Techniques for Dam Site Selection Using GIS: A Case Study of Sistan and Baluchestan Province, Iran. Geosciences, 8(12), 494. https://doi.org/10.3390/geosciences8120494

Julzarika, A., & Harintaka. (2019). Indonesian DEMNAS: DSM or DTM? 2019 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), 31–36. https://doi.org/10.1109/AGERS48446.2019.9034351

Kanga, S., Meraj, G., Johnson, B. A., Singh, S. K., PV, M. N., Farooq, M., Kumar, P., Marazi, A., & Sahu, N. (2022). Understanding the Linkage between Urban Growth and Land Surface Temperature—A Case Study of Bangalore City, India. Remote Sensing, 14(17). https://doi.org/10.3390/rs14174241

Khan, R., Li, H., Basir, M., Chen, Y. L., Sajjad, M. M., Haq, I. U., Ullah, B., Arif, M., & Hassan, W. (2022). Monitoring land use land cover changes and its impacts on land surface temperature over Mardan and Charsadda Districts, Khyber Pakhtunkhwa (KP), Pakistan. Environmental Monitoring and Assessment, 194(6), 409. https://doi.org/10.1007/s10661-022-10072-1

Latue, P. C., Rakuasa, H., Somae, G., & Muin, A. (2023). Analisis Perubahan Suhu Permukaan Daratan di Kabupaten Seram Bagian Barat Menggunakan Platform Berbasis Cloud Google Earth Engine. Sudo Jurnal Teknik Informatika, 2(2), 45–51. https://doi.org/https://doi.org/10.56211/sudo.v2i2.261

Latue, P. C., Septory, J. S. I., & Rakuasa, H. (2023). Perubahan Tutupan Lahan Kota Ambon Tahun 2015, 2019 dan 2023. JPG (Jurnal Pendidikan Geografi), 10(1), 177–186. https://doi.org/http://dx.doi.org/10.20527/jpg.v10i1.15472

Latue, Philia, C., Manakane, S. E., & Rakuasa, H. (2023). Analisis Perkembangan Kepadatan Permukiman di Kota Ambon Tahun 2013 dan 2023 Menggunakan Metode Kernel Density. Blend Sains Jurnal Teknik, 2(1), 26–34. https://doi.org/10.56211/blendsains.v2i1.272

Mansourmoghaddam, M., Rousta, I., Zamani, M., & Olafsson, H. (2023). Investigating and predicting Land Surface Temperature (LST) based on remotely sensed data during 1987–2030 (A case study of Reykjavik city, Iceland). Urban Ecosystems, 26(2), 337–359. https://doi.org/10.1007/s11252-023-01337-9

Moazzam, M. F. U., Doh, Y. H., & Lee, B. G. (2022). Impact of urbanization on land surface temperature and surface urban heat Island using optical remote sensing data: A case study of Jeju Island, Republic of Korea. Building and Environment, 222, 109368. https://doi.org/10.1016/j.buildenv.2022.109368

Neog, R. (2022). Evaluation of temporal dynamics of land use and land surface temperature (LST) in Agartala city of India. Environment, Development and Sustainability, 24(3), 3419–3438. https://doi.org/10.1007/s10668-021-01572-0

Pertuack, S., Latue, P.C., & Rakuasa, H. (2023). Analisis Spasial Daya Dukung Lahan Permukiman Kota Ternate. ULIL ALBAB : Jurnal Ilmiah Multidisiplin, 2(6), 2084–2090. https://doi.org/https://doi.org/10.56799/jim.v2i6.1574

Philia, C. L. (2023). Analysis of Surface Temperature in Buru District Using Cloud Computing on Google Earth Engine. Journal of Multidisciplinary Science, 2(3).

Philia Christi Latue, & H. R. (2023). Pemanfaatan Data Penginderaan Jauh dan Sistim Informasi Geografis Untuk Identifikasi Perkembangan Lahan Terbangun pada Wilayah Rawan Gempa Bumi di Kota Ambon. INSOLOGI: Jurnal Sains Dan Teknologi, 2(3), 476–485. https://doi.org/https://doi.org/10.55123/insologi.v2i3.1899

Rakuasa, H., & Pakniany, Y. (2022). Spatial Dynamics of Land Cover Change in Ternate Tengah District, Ternate City, Indonesia. Forum Geografi, 36(2), 126–135. https://doi.org/DOI: 10.23917/forgeo.v36i2.19978

Rakuasa, H., Sihasale , D. A., & Latue, P. C. (2023). Spatial pattern of changes in land surface temperature of seram island based on google earth engine cloud computing. International Journal of Basic and Applied Science, 12(1), 1–9. https://doi.org/https://doi.org/10.35335/ijobas.v12i1.172

Rakuasa, H. (2022). ANALISIS SPASIAL TEMPORAL SUHU PERMUKAAN DARATAN/ LAND SURFACE TEMPERATURE (LST) KOTA AMBON BERBASIS CLOUD COMPUTING: GOOGLE EARTH ENGINE. Jurnal Ilmiah Informatika Komputer, 27(3), 194–205. https://doi.org/10.35760/ik.2022.v27i3.7101

Rakuasa, H., Sihasale, D. A., Somae, G., & Latue, P. C. (2023). Prediction of Land Cover Model for Central Ambon City in 2041 Using the Cellular Automata Markov Chains Method. Jurnal Geosains Dan Remote Sensing, 4(1), 1–10. https://doi.org/10.23960/jgrs.2023.v4i1.85

Salakory, M., Rakuasa, H. (2022). Modeling of Cellular Automata Markov Chain for predicting the carrying capacity of Ambon City. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan (JPSL), 12(2), 372–387. https://doi.org/https://doi.org/10.29244/jpsl.12.2.372-387

Somae, G., Supriatna, S., Rakuasa, H., & Lubis, A. R. (2023). PEMODELAN SPASIAL PERUBAHAN TUTUPAN LAHAN DAN PREDIKSI TUTUPAN LAHAN KECAMATAN TELUK AMBON BAGUALA MENGGUNAKAN CA-MARKOV. Jurnal Sains Informasi Geografi (J SIG), 6(1), 10–19. https://doi.org/http://dx.doi.org/10.31314/jsig.v6i1.1832

Stoyanova, J. S., Georgiev, C. G., & Neytchev, P. N. (2022). Satellite Observations of Fire Activity in Relation to Biophysical Forcing Effect of Land Surface Temperature in Mediterranean Climate. Remote Sensing, 14(7), 1747. https://doi.org/10.3390/rs14071747

Sugandhi, N., Rakuasa, H., Zainudin, Z., Wahab, W. A., Kamiludin, K., Jaelani, A., ... & Rinaldi, M. (2023). Pemanfaatan Unmanned Aerial Vehicle (UAV) Untuk Pemetaan Pengunaan Lahan di Sekitar Waduk Pondok Ranggon, Provinsi DKI Jakarta. ULIL ALBAB: Jurnal Ilmiah Multidisiplin, 2(7), 3109–3118. https://doi.org/https://doi.org/10.56799/jim.v2i7.1741

Tahooni, A., Kakroodi, A. A., & Kiavarz, M. (2023). Monitoring of land surface albedo and its impact on land surface temperature (LST) using time series of remote sensing data. Ecological Informatics, 75, 102118. https://doi.org/10.1016/j.ecoinf.2023.102118

Wang, R., Cai, M., Ren, C., Bechtel, B., Xu, Y., & Ng, E. (2019). Detecting multi-temporal land cover change and land surface temperature in Pearl River Delta by adopting local climate zone. Urban Climate, 28, 100455. https://doi.org/https://doi.org/10.1016/j.uclim.2019.100455

Wang, S. W., Munkhnasan, L., & Lee, W.-K. (2021). Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environmental Challenges, 2, 100017. https://doi.org/https://doi.org/10.1016/j.envc.2020.100017

Wei, C., & Blaschke, T. (2018). Pixel-Wise vs. Object-Based Impervious Surface Analysis from Remote Sensing: Correlations with Land Surface Temperature and Population Density. Urban Science, 2(1), 2. https://doi.org/10.3390/urbansci2010002

Wibowo, T. W., Ambhika, N., & Pratama, A. P. (2019). Teknik Geovisualisasi untuk Percepatan Pemetaan batas Desa di Daerah Berbukit (Studi Kasus di Desa Terong, Kecamatan Dlingo). Majalah Ilmiah Globe, 21(1), 35–44. https://doi.org/http://dx.doi.org/10.24895/MIG.2016021-1-908

Downloads

Article History

Submitted: 2023-07-27
Published: 2023-08-01
Pages: 39-47

PlumX Metrics

How to Cite

Pertuack, S., & Latue, P. C. (2023). Geographic Artificial Intelligence and Unmanned Aerial Vehicles Application for Correlation Analysis of Settlement Density and Land Surface Temperature in Panggang Island Jakarta. Buana Jurnal Geografi, Ekologi Dan Kebencanaan, 1(1), 39–47. https://doi.org/10.56211/buana.v1i1.340