FACTORY

Jurnal Industri, Manajemen dan Rekayasa Sistem Industri

https://jurnal.ilmubersama.com/index.php/factory

Artikel Penelitian

Pengaruh Variasi Metode Aplikasi Pengecatan terhadap Kekuatan Daya Rekat Cat dan Biaya di PT TDS

Yoga Firmansyah ¹, Jasan Supratman ²

INFORMASI ARTIKEL

Diterima Redaksi: 08 Juli 2023 Revisi Akhir: 1 Agustus 2023 Diterbitkan *Online*: 24 September 2023

KATA KUNCI

Rancangan Percobaan; Metode Aplikasi Pengecatan; Kekuatan Daya Rekat Cat

Korespondensi

Phone: +62 856-8520-063

E-mail: jasan.supratman@dsn.ubharajaya.ac.id

ABSTRAK

PT TDS merupakan perusahaan yang bergerak di bidang perlindungan korosi. Jenis perlindungan korosi yang dikerjakan menggunakan aplikasi metode pengecatan melalui roll, conventional air spray dan airless dengan kemampuan dan kekuatan daya rekat setiap metode aplikasi yang berbeda. Hal ini menjadi permasalahan di PT TDS karena tidak mempunyai data yang valid mengenai pengaruh dan kemampuan masing-masing metode aplikasi pengecatan tersebut dan juga mengenai biaya proses setiap aplikasi. Dengan pendekatan rancangan percobaan diharapkan akan dapat mengetahui pengaruh variasi metode aplikasi pengecetan terhadap kekuatan daya rekat sekaligus biaya proses aplikasi. Selanjutnya percobaan tersebut juga dapat menentukan metode paling berpengaruh serta biaya paling efisien dari ketiga metode aplikasi tersebut. Untuk penelitian tersebut langkahlangkah yang dilakukan adalah dengan melakukan percobaan sampel pada plat untuk setiap metode aplikasi pengecatan dan diambil data kekuatan daya rekat. Kemudian akan di uji normalitas, homogenitas, model aditif linier, uji statistik, ANOVA dan Uji lanjut dengan beda nyata terkecil (BNT). Kemudian pembuatan rencana anggaran proyek. Dari hasil pengolahan data didapat uji statistik ANOVA menghasilkan F hitung sebesar 6.680 dan F tabel 5.143, karena F hitung lebih besar dari F tabel maka H₀ ditolak. Disimpulkan bahwa variasi metode aplikasi pengecatan berpengaruh terhadap kekuatan daya rekat cat. Kemudian untuk metode aplikasi yang paling berpengaruh adalah menggunakan metode airless dengan kekuatan daya rekat 10.667 Mpa. Selanjutnya untuk metode aplikasi yang paling efisien dari pembiayaan adalah metode aplikasi roll dengan biaya Rp. 106.222/M² atau Rp. 384.400 dari total semua biaya yang dikeluarkan.

PENDAHULUAN

Indonesia adalah negara berkembang, begitu juga dengan industri di dalamnya. Industri di Indonesia berkembang setiap tahunnya. Menurut Pratama (2020) yang mengutip dari Badan Pusat Statistik (BPS) tahun 2019, sektor industri manufaktur berada pada ranking pertama dalam kontribusinya terhadap pertumbuhan ekonomi nasional. Jika melihat struktur neraca perdagangan Indonesia terakhir, total ekspor untuk tahun 2019 adalah US\$ 14.5, dimana 84.5% dari total nilai ekspor disumbang dari pendapatan nonmigas. Dari nilai total ekspor nonmigas, kontribusi terbesar kedua yaitu 13.55% disumbang dari golongan besi baja, mesin-mesin dan otomotif termasuk industri manufaktur didalamnya. Hal ini merupakan bukti bahwa industri manufaktur memainkan peran penting untuk peningkatan ekonomi Indonesia. PT TDS merupakan perusahaan yang bergerak pada jasa aplikasi sandblasting dan coating baik di bengkel sendiri atau di lokasi customer. Jasa yang ditawarkan oleh PT TDS mencakup semua mekanisme perlindungan korosi (Corrosion Protection). Ada banyak jenis perlindungan korosi yang disediakan oleh PT TDS diantaranya yang paling banyak dikerjakan selama ini adalah dengan menggunakan metode painting atau pengecatan. Metode ini banyak digunakan dikarenakan sangat mudah diaplikasikan dengan berbagai objek seperti H-Beam, steel structure, pipa dan lain sebagainya. Untuk kebutuhan aplikasi pengecatan yang digunakan selama ini menggunakan banyak metode. Metode yang

¹ Fakultas Sains dan Teknologi, Program Studi Teknik Industri, Universitas Islam As-Syafi 'iyah, Jakarta Timur, Indonesia

² Fakultas Teknik, Program Studi Teknik Industri, Universitas Bhayangkara Jakarta Raya, Jakarta Selatan, Indonesia

sering digunakan tersebut adalah roll, conventional air spray dan juga airless. Ketiga metode aplikasi tersebut memiliki kemampuan yang berbeda-beda dan hal itu juga berbanding lurus dengan kekuatan daya rekat yang dihasilkan pada setiap metode. Daya rekat yang dimaksud dalam hal ini adalah kerekatan cat dengan permukaan objek. Hal ini menjadi permasalahan di PT TDS karena tidak mempunyai data yang valid mengenai pengaruh dan kemampuan masing-masing metode aplikasi pengecatan tersebut. Hal ini terjadi dikarenakan kebanyakan pemilihan metode aplikasi hanya menggunakan dasar pengalaman saja, tidak menggunakan data yang bisa menjadi landasan dalam pengambilan keputusan. Karena pemilihan metode aplikasi pada suatu proyek sangat berpengaruh terhadap harga dan waktu pengerjaan. Dengan mengetahui pengaruh dan kemampuan masing-masing metode aplikasi terhadap dengan kekuatan daya rekat cat akan sangat berguna dalam memberikan pilihan dan rekomendasi aplikasi terbaik untuk para customer. Sehingga para customer dapat memilih dan menentukan metode aplikasi sesuai dengan kebutuhan mereka. Untuk itu sangat perlu diketahui pengaruh setiap metode aplikasi pengecetan terhadap kekuatan daya rekat cat yang dihasilkan dan juga mengenai biaya proses.

Berdasarkan pada uraian di atas, maka diperoleh rumusan masalah sebagai berikut:

- 1. Apakah variasi metode aplikasi pengecatan berpengaruh terhadap kekuatan daya rekat cat?
- 2. Mencari metode yang paling berpengaruh terhadap kekuatan daya rekat melalui uji lanjut Beda Nyata Terkecil (BNT) atau Least Significance Different (LSD).
- 3. Mencari metode aplikasi pengecatan yang paling efisien dari segi pembiayaan.

Berdasarkan rumusan masalah tersebut maka tujuan dari penelitian ini adalah:

- 1. Mengetahui pengaruh variasi metode aplikasi pengecatan terhadap kekuatan daya rekat cat.
- 2. Menentukan metode aplikasi pengecatan yang paling berpengaruh terhadap daya rekat cat dengan menggunakan uji lanjut Beda Nyata Terkecil (BNT) atau Least Significance Different (LSD).
- 3. Menentukan metode aplikasi pengecatan yang paling efisien dari segi pembiayaan.

TINJAUAN PUSTAKA

Menurut Mattjik dan Sumertajaya (2006), Perancangan percobaan merupakan suatu uji atau sederetan uji baik itu menggunakan stastistika deskrpisi atau inferensia, yang bertujuan untuk mengubah peubah input menjadi suatu output yang merupakan respon dari percobaan tersebut. Rancangan perobaan bertujuan untuk memperoleh atau mengumpulkan informasi sebanyak-banyaknya yang diperlukan dan berguna dalam melakukan penelitian persoalan yang akan dibahas (Sudjana, 1995). Menurut Mattjik dan Sumertajaya (2006) penerapan percobaan satu faktor dalam rancangan acak lengkap biasanya digunakan jika kondisi unit percobaan yang digunakan relatif homogen. Pada umumnya percobaan dilakukan di labolatorium kehomogenan unit percobaan bisa dijamin.

Uji normalitas merupakan pengujian yang bertujuan untuk mengetahui apakah masing-masing variabel berdistribusi normal atau tidak. Uji normalitas diperlukan karena untuk melakukan pengujian-pengujian variabel lainnya dengan mengansumsikan bahwa nilai residual mengikuti distribusi normal (Ghozali, 2013). Hipotesis yang diajukan untuk uji normalitas ini adalah sebagai berikut:

- 1. H0 = Data berdistribusi normal
- 2. H1 = Data tidak berdistribusi normal

Uji homogenitas bertujuan untuk menentukan apakah varian kedua kelompok homogen atau tidak. uji homogenitas digunakan untuk mengetahui apakah beberapa varian populasi data adalah sama atau tidak. Homogenitas dilakukan untuk mengetahui apakah data dari masing- masing kelompok mempunyai varian yang sama atau berbeda sehingga dapat ditentukan rumus t-test mana yang akan dipilih untuk pengujian hipotesis (Sugiyono, 2011). Hipotesis pengambilan keputusan untuk uji homogenitas adalah

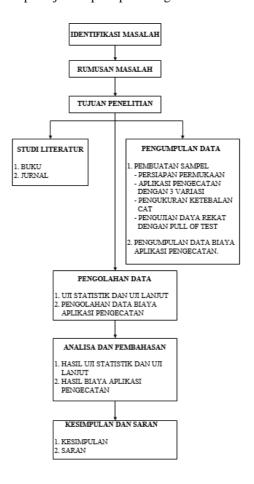
- 1. H0: Data kelas eksperimen dan kelas kontrol memiliki varian yang sama (homogen)
- 2. H1: Data kelompok eksperimen dan kelompok kontrol memiliki varian yang berbeda (tidak homogen)

Menurut Mattjik dan Sumertajaya (2006), model linier aditif secara umum dari rancangan satu faktor dengan rancangan acak lengkap dapat dibedakan menjadi dua yaitu model tetap dan model acak. Model tetap merupakan model dimana perlakuan- perlakuan yang digunakan dalam berasal dari populasi yang terbatas hanaya pada perlakuan yang

dicoabakan saja tidak bisa digeneralisasikan. Sedangkan model acak merupakan model dimana perlakuan yang dicoabakan merupakan contoh acak dari populasi perlakuan.

Hipotesis merupakan jawaban sementara terhadap masalah yang masih bersifat praduga sebelum dibuktikan kebenerannya. Pada hipotesis ini berdasarkan dari Menurut Mattjik dan Sumertajaya (2006). Uji statistik merupakan perhitungan yang digunakan untuk membantu pembuktian hipotesis.

Analisys Of Variance (ANOVA) Menurut Mattjik dan Sumertajaya (2006) dalam melakukan analisis hasil percobaan atau penelitian, misalnya analisis ragam kadang- kadang kita lupa untuk melakukan pengujian terhadap data yang kita analisis, terutama untuk pengujian yang melibatkan uji nyata, karena dalam melakukan analisis, asumsi – asumsi yang mendasari ANOVA haruslah terpenuhi. Pengambilan keputusan:


Jika F hitung > F tabel maka H0 ditolak atau H1 diterima.

Jika F hitung < F tabel maka H0 diterima

Uji Lanjut dengan Pendekatan Beda Nyata Terkecil (BNT) atau Least Significance Different (LSD) Menurut Gaspersz (1991), Apabila hasil dari hipotesis atau ANOVA H0 ditolak, yang berarti paling sedikit ada dua nilai tengah perlakuan yang berbeda, maka pertanyaan berikut nilai tengah mana saja yang menunjukan perbedaan tersebut perlu dijawab. Hal ini berarti perlu dilakukan pengujian lanjutan untuk melacak perbedaan diantara nilai tengah perlakuan tersebut. Uji BNT merupakan prosedur pengujian perbedaan diantara nilai tengah perlakuan yang paling sederhana dan paling umum digunakan.

METODOLOGI

Adapun langkah penelitian untuk mencapai tujuan seperti pada diagram alir berikut ini:

Gambar 1. Diagram Alir Penelitian

Setelah diketahui masalah dan tujuan dari penelitian ini maka selanjutnya akan dilakukan studi literatur berdasarkan jurnal dan buku penunjang dalam penelitian ini, kemudian akan dilakukan pengembilan dan pengolahan data, kemudian selanjutnya akan dilakukan analisa dan pembahasan dari hasil pengolahan data dan yang terahir adalah kesimpulan dan saran untuk menjawab dari tujuan penelitian ini.

Pengambilan dan Pengolahan Data

Data yang diperlukan adalah kekuatan daya rekat cat yang dihasilkan dari masing- masing metode aplikasi pengecatan. Pengumpulan data dilakukan dengan membuat sampel, kemudian dilakukan persiapan permukaan dengan metode sandblasting dan setelah itu masing-masing sampel akan dicat dengan variasi model aplikasi roll, conventional air spray dan airless. Kemudian juga data yang dikumpulkan merupakan semua komponen yang digunakan pada proses aplikasi pengecatan yang meliputi material cat, barang consumable atau barang yang mudah habis, peralatan yang digunakan, gaji operator dan akomodasi yang digunakan selama proses penelitian berlangsung. Semua komponen tersebut dirincikan secara detail dan dicari harganya, kemudian akan dihitung untuk mendapatkan masing-masing biaya metode aplikasi pengecatan. Setalah data dikumpulkan selanjutnya adalah pengolahan data, data yang diolah merupakan data hasil dari pengujian kekuatan daya rekat cat dengan menggunakan metode pull of test dan juga semua komponen yaitu material cat, barang cosumable, peralatan yang digunakan, gaji operator dan akomodasi, selanjutnya data tersebut akan dimasukan kedalam rencana anggaran proyek (RAP).

Untuk pengolahan data kekuatan daya rekat cat, data akan diproses dengan melakukan pengolahan data uji normalitas kemudian uji homogenitas. Jika sudah melewati uji tersebut selanjutnya akan dilakukan uji statistik dengan pendekatan rancangan acak lengkap (RAL). Kemudian setelah itu akan dilakukan penentuan model aditif linier dan hipotesis. Kemudian akan dilakukan uji statistik dengan mencari faktor koreksi (FK), jumlah kuadrat total (JKT), jumlah kuadrat perlakuan (JKP) dan jarak kuadrat galat (JKG). Sesudah itu akan dilakukan uji ANOVA dan uji lanjut dengan pendekatan metode beda nyata terkecil (BNT) atau Least Significance Different (LSD). Kemudian dalam pengolan data uji statistik akan dibantu dengan software IBM SPSS Statistik dan Ms. Excel. Untuk pengolahan data biaya aplikasi pengecatan Didalam RAP ada komponen lain yang juga dihitung selain yang sudah disebutkan sebelumnya yaitu luasan area, dan juga lama pengerjaan. Maka dari perhitungan tersebut akan keluar hasil untuk masingmasing metode aplikasi pengecatan yaitu jumlah total biaya aplikasi, harga aplikasi /M² dan presentasi setiap komponen terhadap keseluruhan biaya aplikasi.

HASIL DAN PEMBAHASAN

Hasil dan Pembahasan Pengambilan Data Kekuatan Daya Rekat Cat

Gambar 2. Hasil Pengujian Dengan Airless

Gambar 3. Hasil Pengujian Dengan Con. Air Spray

Gambar 4. Hasil Pengujian Dengan Roll

Setelah dilakukan pengambilan data, berikut adalah data yang dihasilkan:

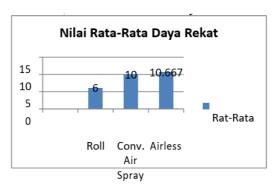
Tabel 1. Hasil Pegukuran Kekuatan Daya Rekat Cat Desember 2022

		_		
Ulangan Mpa	Roll	Conv. Air Spray	Airless	Jumlah
Dolly 1	6	8	9	23
Dolly 2	7	9.5	11	27.5
Dolly 3	5	12.5	12	29.5
Jumlah	18	30	32	80

Setelah diketahui masing-masing kekuatan daya rekat dari setiap metode aplikasi pengecatan, selanjutnya hasil pengukuran tersebut akan diolah degan melakukan Analisys Of Variance (ANOVA).

Tabel 2. Tabel Anova

		ANOVA			
Sumber	Derajat bebas	Jumlah	Kuadrat	F Hitung F Tabel	
Keragaman	(DB)	Kuadrat	Tengah (KT)		5
Metode	2	38.222	19.111	6.680	5.143
Galat	6	17.167	2.861		
Total	8	55.389			


Dari data tersebut dapat dilihat bahwa F hitung adalah 6.680 dan F tabel 5.143. Dikarenakan F hitung lebih besar dari F tabel maka H₀ ditolak. Hasil ini menunjukkan bahwa metode aplikasi pengecatan baik itu dengan menggunakan *roll*, *conventional air spray* dan juga *airless* memberikan pengaruh signifikan terhadap kekuatan daya rekat.

Setelah dilakukan *Analisys of Variance* (ANOVA), selanjutnya dilakukan uji Lanjut Beda Nyata Terkecil (BNT) dengan hasil sebagai berikut:

Tabel 3. Uii BNT

rueer ev egr 21 vr							
Metode	x 1		x 2	Metode	BNT	Keterangan	
Roll	6	V S	10	$\frac{Conv.\ Air}{Spray} \leq$	4.1	Tidak Beda Nyata	
Roll	6	V	10.6	<i>Airless</i> ≥	4.1	Beda Nyata	
Conv. Air Spray	10	V S	10.6 67	<i>Airless</i> ≤	4.1	Tidak Beda Nyata	

Dari hasil pengolahan data yang disajikan pada tabel diatas dapat disebutkan bahwa terdapat perbedaan nyata dan tidak berbeda nyata. Selanjutnya menentukan aplikasi paling berpengaruh dari ketiga aplikasi tersebut melalui nilai rata-rata setiap metode aplikasi pengecatan, dengan hasil sebagai berikut:

Gambar 5. Nilai Rata-Rata Daya Rekat

Dapat dilihat dari rata-rata terbesar dari hasil pengujian daya rekat. Dari grafik ini dapat dilihat bahwa rata-rata paling besar dari hasil pengujian daya rekat adalah metode airless dengan nilai 10.667 Mpa.

Hasil dan pembahasan Pengolahan Data Biaya Aplikasi Pengecatan

Berikut merupakan data biaya aplikasi pengecatan yang dilakukan pada saat pengambilan sampel:

Tabel 4. Rincian Biaya Aplikasi Pengecatan Metode Airless

No.	Deskripsi	Qty	Satuan	Harga Satuan	Jumlah		
A	Material Cat :						
1	Interzinc 22	2	Ltr	170,000	340,000		
2	Intergard 475 HS	2	Ltr	49,000	98,000		
3	Interthane 990	2	Ltr	82,000	164,000		
В	Consumable						
1	Kertas Amplas	0.5	Lbr	1,800	900		
2	Majun	0.5	Kg	11,000	5,500		
3	Lakban	1	Rol	15,000	15,000		
4	Catride 202	1	ea	9,500	9,500		
5	Sarung tangan	0.5	Lsn	22,000	11,000		
C	Peralatan						
1	Airless Set	1	Lot	75,000	75,000		
2	Kompresor Listrik	1	Lot	75,000	75,000		
3	Test Instrument	1	Lot	50,000	50,000		
D	Biaya Gaji			`			
1	Blaster & Painter	3	Hr	30,000	90,000		
E	Akomodasi						
1	Air minum	1	Dus	15,000	15,000		
	Total						

Tabel 5. Rincian Biaya Aplikasi Pengecatan Metode Conventional Air Sprat

No.	Deskripsi	Qty	Satuan	Harga Satuan	Jumlah	
A	Material Cat :					
1	Interzinc 22	1	Ltr	170,000	170,000	
2	Intergard 475 HS	1	Ltr	49,000	49,000	
3	Interthane 990	1	Ltr	82,000	82,000	
В	Consumable					
1	Kertas Amplas	0.5	Lbr	1,800	900	
2	Majun	0.5	Kg	11,000	5,500	
3	Lakban	1	Rol	15,000	15,000	
4	Catride 202	1	ea	9,500	9,500	
5	Sarung tangan	0.5	Lsn	22,000	11,000	
C	Peralatan :					
1	Conv. Air Spray Complete Set	1	Lot	50,000	50,000	
2	Kompresor Listrik	1	Lot	75,000	75,000	
3	Test Instrument	1	Lot	50,000	50,000	
D	Biaya Gaji :					
1	Blaster & Painter	3	Hr	30,000	90,000	
E	Akomodasi				·	
1	Air minum	1	Dus	15,000	15,000	
Total						

Tabel 6. Rincian Biaya Aplikasi Pengecatan Metode Roll

No.	Deskrispi	Qty	Satuan	Harga	Jumlah
Α	Material Cat:				
1	Interzinc 22	0.5	Ltr	170,000	85,000
2	Intergard 475 HS	0.5	Ltr	49,000	24,500
3	Interthane 990	0.5	Ltr	82,000	41,000
В	Consumable				
1	Kertas Amplas	0.5	Lbr	1,800	900
2	Majun	0.5	Kg	11,000	5,500
3	Lakban	1	Rol	15,000	15,000
4	Kuas	2	Pcs	2,500	5,000
5	Catride 202	1	ea	9,500	9,500
6	Sarung tangan	0.5	Lsn	22,000	11,000
C	Peralatan :				
1	Test Instrument	1	Lot	50,000	50,000
D	Biava Gaji :				
1	Blaster & Painter	3	Hr	30,000	90,000
E	Akomodasi				
1	Air minum	1	Dus	15,000	15,000
		Total			352,400

Tabel diatas menunjukan rincian biaya yang digunakan pada saat aplikasi pengecata. Untuk perhitungan keseluruhan dapat dilihat dari grafik sebagai berikut:

Gambar 6. Perbandingan Harga Aplikasi dan Daya Rekat

Dari diagram di atas dapat dilihat perbandingan harga dan daya rekat setiap metode aplikasi pengecatan. Metode roll merupakan metode yang paling rendah diantara kedua metode lainnya dengan Rp.106.222 /M² dan daya rekat 6 Mpa. Sedangkan diposisi kedua dengan biaya paling mahal adalah metode conventioanl air spray dengan Rp. 263.306 /M² dengan daya rekat 10 Mpa. Dan yang paling tinggi dari ketiga metode tersebut adalah adalah metode Airless dengan Rp. 356.114 /M² dan daya rekat 10.667 Mpa. Berdasarkan kesimpulan tersebut metode yang paling efisien dari segi pembiayaan dalam penelitian ini adalah dengan metode roll.

KESIMPULAN DAN SARAN

Berdasarkan hasil pengolahan dan analisa data dapat diambil kesimpulan sebagai berikut: Metode aplikasi pengecatan dengan menggunakan roll, conventional air spray dan airless berpengaruh terhadap kekuatan daya rekat cat. Metode aplikasi yang paling berpengaruh terhadap kekuatan daya rekat dari ketiga metode ini adalah menggunakan airless, dengan kekuatan daya rekat 10.667 Mpa. Metode aplikasi yang paling efisien dari segi pembiayaan adalah metode aplikasi roll dengan biaya Rp. 106.222/M² atau Rp. 384.400 dari total semua biaya yang dikeluarkan.

Dari yang sudah dibahas diatas Adapun saran penulis untuk penelitian selanjutnya yaitu sebagai berikut: Untuk mendapatkan nilai daya rekat cat yang optimum, penelitian selanjutnya perlu mempelajari variabel-variabel prediktor lain seperti suhu ruangan, kelembaban udara, dan campuran cat pada proses painting yang akan diaplikasikan. Dalam pengujian daya rekat diharapkan menggunakan metode lain seperti cross cut dan x cut. Dalam penelitian selanjutnya diharapkan juga memperhitungkan pengaruh variasi persiapan permukaan terhadap daya rekat cat pada objek. Dalam penelitian selanjutnya dilakukan percobaan dari kedua metode aplikasi tersebut terhadap kekuatan daya rekat tetapi dengan parameter area aplikasi yang lebih luas, jenis material cata yang berbeda, serta persiapan permukaan yang berbeda.

DAFTAR PUSTAKA

- [1] Kirto, Ahmad. Daya Tarik Kopi Toraja, Jenis Kopi di Indonesia yang Melegenda | Home. (2022). Retrieved June 19, 2023, from Nescafe.com
- [2] Abul hasan M.Sadeq. 1996. "Quality Management in the Islamic ramework", Leeds Publication, K. Lumpur.
- [3] Aditama, Dirga Satya, and Dirga Satya Aditama. Pengaruh Jarak Dan Sudut Dry Sandblasting Terhadap Kekasaran Permukaan Pada Baja Karbon Sedang. Diss. Universitas Udayana, 2015.
- [4] Afandi, Y. K., Arief, I. S., & Amiadji, A. (2015). Analisa Laju Korosi Pada Pelat Baja Karbon Dengan Variasi Ketebalan Coating. Jurnal Teknik ITS, 4(1), G1-G5.
- [5] ASCOATINDO, 2007. Coating Inspektor Muda. Bandung: Corrosion Care Indonesia.
- [6] SPSS 21. Edisi 7, Penerbit Universitas Diponegoro, Semarang.
- [7] Hinnes, William dan Douglas C. Montgomery. (1990). Probabilita dan Statistik dalam Ilmu Rekayasa dan Manajemen. Edisi kedua. Jakarta : Penerbit Universitas Indonesia.
- [8] J. Supranto, 2003, Statistik Teori dan Aplikasi, Edisi Lama, Penerbit Erlangga Jakarta.
- [9] Kotler, Philip and Garry Amstrong. 2012. Principles of Marketing. New Jersey: Pearson Education Limited
- [10] Li, C.J., & Li, W.Y., 2002, "Effect of sprayed powder particle size on theoxidation behavior of MCrAlY materials during high velocity oxygen-fuel deposition" Surface Coatings Tech, Vol. 162, 31 41.
- [11] Mattjik, A. A & Sumertajaya, I. M. 2000. Perancangan Percobaan dengan Aplikasi SAS dan Minitab Jilid I. Bogor: IPB Press.
- [12] Montgomery, D.C. 2003. Design and Analysis of Experiments 5th Edition. Singapore: John Wiley & Sons.
- [13] Mullin, John W, Orville C Walker. 2005. Marketing Management A Strategic Decision, fifth edition, New York: McGraw Hill.
- [14] Munadi, S., 1988. Dasar-dasar Metrologi Industri. Jakarta: DIKTI
- [15] Surface Profile of Blast Cleaned Steel. America: The United States of America Legally Binding Document.
- [16] Gaspersz, V. 1991. Metode Perancangan Percobaan. Bandung: Armico
- [17] Ghozali, Imam, 2013. Aplikasi Analisis Multivariat dengan Program IBM
- [18] Nik Mustapha Hj. Nik Hassan. 2005. "An Islamic approach to Quality and Productivity". Leed Publication.
- [19] Pradana, R. B., & Kromodiharjo, S. (2017). Studi eksperimen pengaruh tekanan dan waktu sandblasting terhadap
- [20] kekasaran permukaan, biaya, dan kebersihan pada pelat baja karbon rendah di PT. swadaya graha. Jurnal

- Teknik ITS, 5(2). Pradana, R. B., & Kromodiharjo, S. (2017).
- [21] Pradana, R. B., & Kromodiharjo, S. (2017). Studi eksperimen pengaruh tekanan dan waktu sandblasting terhadap kekasaran permukaan, biaya, dan kebersihan pada pelat baja karbon rendah di PT. swadaya graha. Jurnal Teknik ITS, 5(2).
- [22] Rosidah, Ardila. 2015. Analisis Kekasaran Permukaan Pada Proses Sand Blasting Dengan Variasi Jarak, Tekanan, dan Sudut Pada Pelat A 36 Menggunakan Metode Box Behnken. Jurusan Teknik Desain Manufaktur. Politeknik Perkapalan Negeri Surabaya.
- [23] Singarimbun, Masri.1995. Metode Penelititan Survei. LP3S, Jakarta
- [24] Steel, R.G.D. & Torrie, J.H. 1991. Prinsip dan Prosedur Statistika Suatu Pendekatan Biometrik (Terjemahan: Bambang Sumantri). Jakarta: PT Gramedia.
- [25] Sudjana, (1995). Desain dan Analisis Eksperimen. Edisi keempat. Bandung: Tarsito.
- [26] Sulistyo, E, & Setyorini, P. H. (2012). Pengaruh Waktu Dan Sudut Penyemprotan Pada Proses Sand Blasting Terhadap Laju Korosi Hasil Pengecatan Baja AISI 430. Rekayasa Mesin, 2(3), 205-208.
- [27] Wahyudin, (1995), Proses Persiapan Untuk Pelapisan, Puslitbang Telimek LIPI.
- [28] Widiyarta, I. M., Parwata, I. M., & Lokantara, I. P. (2014). Kekasaran Permukaan Baja Karbon Sedang Akibat Proses Sand-Blasting dengan Variasi Jarak Nosel. Jurnal Energi dan Manufaktur Vol, 7(1), 111-230.
- [29] Yusufi, A. F. (2016). Analisa Daya Rekat Cat Pada Proses Painting Dengan Variasi Jumlah Lapisan, Surface Preparation Dan Aplikator Pada Baja A 36 Menggunakan Metode Desain Faktorial. Teknik Desain Dan Manufaktur. Politeknik Perkapalan Negeri Surabaya.