Metode Life Cycle Assessment (LCA) Dalam Penilaian Dampak Lingkungan Industri Kelapa Sawit Untuk Kelapa Sawit Berkelanjutan

Abstract Views: 1551   PDF Downloads: 997

Authors

  • Maisarah Maisarah Institut Teknologi Sawit Indonesia, Medan
  • Rahmad Dian Institut Teknologi Sawit Indonesia, Medan

DOI:

https://doi.org/10.56211/tabela.v2i1.452

Keywords:

Dampak Lingkungan; Industri; Kelapa Sawit; Life Cycle Assessment (LCA); Perkebunan

Abstract

Konsumsi energi dan penghasilan emisi gas rumah kaca telah menghasilkan peningkatan polutan ke lingkungan dari limbah kegiatan industri, salah satunya industri kelapa sawit yang sangat masif di Indonesia. Life Cycle Assessment (LCA) atau Penilaian Siklus Hidup merupakan metode yang dapat digunakan untuk menganalisis dampak lingkungan dari proses produksi pada industri kelapa sawit. Industri kelapa sawit dapat memberikan dampak terhadap lingkungan, seperti pencemaran udara akibat mesin, pencemaran air dan tanah akibat penggunaan pupuk dan pestisida, serta konsumsi air yang berlebihan. Tetapi hal ini dapat diatasi dengan menilai dan mendeteksi pada tahapan mana di industri kelapa sawit yang menjadi kontributor utama. Artikel ini memaparkan penerapan LCA pada sektor perkebunan kelapa sawit sebagai pendukung pengambil keputusan. Pendekatan Preferred Reporting Items for Systematic Reviews and Meta-analysis Item (PRISMA) digunakan untuk mengidentifikasi, menyaring, dan memasukkan artikel yang relevan. Mengidentifikasi artikel terkait penilaian siklus hidup di sektor perkebunan kelapa sawit yang memenuhi syarat untuk analisis menjadi salah satu metode penulisan. Temuan menunjukkan bahwa tren penelitian tentang LCA di sektor perkebunan kelapa sawit terbagi atas subsistem perkebunan kelapa sawit dan industri pabrik kelapa sawit. Dampak lingkungan yang ditemukan dalam artikel tersebut adalah parameter global warming potential (GWP dan asidifikasi. Didapatkan hasil bahwa penilaian LCA dapat menjadi salah satu pendukung pengambilan keputusan dengan berorientasi pada dampak lingkungan negatif terkecil yang dihasilkan dari suatu proses. Didapatkan bahwa pada industri kelapa sawit tahapan yang menghasilkan GWP terbesar ialah proses pemupukan dan pengelolaan limbah POME, sehingga pengambilan keputusan kedepannya dapat mempertimbangkan proses tersebut.

Downloads

Download data is not yet available.

Author Biographies

Maisarah Maisarah,
Institut Teknologi Sawit Indonesia, Medan

Beliau bekerja sebagai dosen dan peneliti di Program Sarjana Teknik Kimia Fakultas Sains dan Teknologi di Institut Teknologi Sawit Indonesia.

Rahmad Dian,
Institut Teknologi Sawit Indonesia, Medan

Beliau bekerja sebagai dosen dan peneliti di Program Sarjana Sistem dan Teknologi Informasi (STI) Fakultas Sains dan Teknologi di Institut Teknologi Sawit Indonesia.

References

Adiansyah, J. S., Ningrum, N. P., Pratiwi, D., & Hadiyanto, H. (2019). Kajian Daur Hidup (Life Cycle Assessment) dalam Produksi Pupuk Urea: Studi Kasus PT Pupuk Kujang. Jurnal Ilmu Lingkungan, 17(3), 522. https://doi.org/10.14710/jil.17.3.522-527 DOI: https://doi.org/10.14710/jil.17.3.522-527

Bayer, C., Gamble, M., Gentry, R., & Joshi, S. (2010). Guide to Building Life Cycle Assessment in Practice. In American Institute of Architects.

DEAT. (2004). Life cycle assessment, , Integrated Environmental Management, Information Series 9. In Department of Environmental Affairs and Tourism (DEAT), Pretoria. (ISBN 0-958). https://doi.org/10.1016/B978-0-12-816691-8.00027-3 DOI: https://doi.org/10.1016/B978-0-12-816691-8.00027-3

HyTechcyling. (2020). Assessment of critical materials and components in FCH technologies - LCA approach in end of life cycle of FCH technologies (Issue 700190).

Itskos, G., Nikolopoulos, N., Kourkoumpas, D. S., Koutsianos, A., Violidakis, I., Drosatos, P., & Grammelis, P. (2016). Environment and Development : Chapter 6 Energy and the environment. In Environment and Development: Basic Principles, Human Activities, and Environmental Implications (pp. 363–452). Elsevier B.V. https://doi.org/10.1016/B978-0-444-62733-9.00006-X DOI: https://doi.org/10.1016/B978-0-444-62733-9.00006-X

Klopffer, W., & Grahl., B. (2014). Life Cycle Assessment (LCA): A Guide to Best Practice, First Edition : Chapter 4 Life Cycle Impact Assessment. In Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1017/9781108333726.016 DOI: https://doi.org/10.1002/9783527655625

Lee, S. W., & Koo, M. J. (2022). PRISMA 2020 statement and guidelines for systematic review and meta-analysis articles, and their underlying mathematics: Life Cycle Committee Recommendations. Life Cycle, 2, 1–10. https://doi.org/10.54724/lc.2022.e9 DOI: https://doi.org/10.54724/lc.2022.e9

Li, T., Zhang, H., Liu, Z., Ke, Q., & Alting, L. (2014). A system boundary identification method for life cycle assessment. International Journal of Life Cycle Assessment, 19(3), 646–660. https://doi.org/10.1007/s11367-013-0654-5 DOI: https://doi.org/10.1007/s11367-013-0654-5

Maisarah, Adityosulindro, S., & Wulandari, D. (2021). Utilization of wild algae biomass as biosorbent for removal of heavy metal Zinc (Zn2+) from aqueous solution. IOP Conference Series: Earth and Environmental Science, 824(1), 2–9. https://doi.org/10.1088/1755-1315/824/1/012017 DOI: https://doi.org/10.1088/1755-1315/824/1/012017

Maisarah, Saefumillah, A., & Ambarsari, H. (2020). Study of microalgae (Scenedesmus Sp.) utilization as phosphate bioremediator (PO43-) in domestic wastewater medium. IOP Conference Series: Materials Science and Engineering, 763(1). https://doi.org/10.1088/1757-899X/763/1/012055 DOI: https://doi.org/10.1088/1757-899X/763/1/012055

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336–341. https://doi.org/10.1016/j.ijsu.2010.02.007 DOI: https://doi.org/10.1016/j.ijsu.2010.02.007

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Antes, G., Atkins, D., Barbour, V., Barrowman, N., Berlin, J. A., Clark, J., Clarke, M., Cook, D., D’Amico, R., Deeks, J. J., Devereaux, P. J., Dickersin, K., Egger, M., Ernst, E., Gøtzsche, P. C., … Tugwell, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7). https://doi.org/10.1371/journal.pmed.1000097 DOI: https://doi.org/10.1371/journal.pmed.1000097

Musthafa Al Hakim, H., Supartono, W., & Suryandono, A. (2014). Life Cycle Assesment Pada Pembibitan Kelapa Sawit Untuk Menghitung Emisi Gas Rumah Kaca (Life Cycle Assessment Of Palm Oil Seedlings For Calculating The Greenhouse Gas Emissions). Ziraa’Ah, 39(2), 72–80.

Paminto, A. K., Karuniasa, M., & Frimawaty, E. (2022). Potential environmental impact of biodiesel production from palm oil using LCA (Life Cycle Assessment) in Indonesia. Jurnal Pengelolaan Sumberdaya Alam Dan Lingkungan, 12(1), 64–71. https://doi.org/10.29244/jpsl.12.1.64-71 DOI: https://doi.org/10.29244/jpsl.12.1.64-71

Rakhmawati, A. N., Devia, Y. P., & Wijatmiko, I. (2020). Life Cycle Assessment (LCA) Analysis of Concrete Slab Construction For Estimating The Environmental Impact. Rekayasa Sipil, 14(3), 232–237. https://doi.org/10.21776/ub.rekayasasipil.2020.014.03.10 DOI: https://doi.org/10.21776/ub.rekayasasipil.2020.014.03.10

Rinaldo, R., Suprihatin, S., & Yani, M. (2023). Life cycle assessment produksi crude palm oil (CPO) (studi kasus: PT X Provinsi Bengkulu). Agrointek : Jurnal Teknologi Industri Pertanian, 17(3), 651–659. https://doi.org/10.21107/agrointek.v17i3.17131 DOI: https://doi.org/10.21107/agrointek.v17i3.17131

Roos, S., Holmquist, H., Jönsson, C., & Arvidsson, R. (2018). USEtox characterisation factors for textile chemicals based on a transparent data source selection strategy. International Journal of Life Cycle Assessment, 23(4), 890–903. https://doi.org/10.1007/s11367-017-1330-y DOI: https://doi.org/10.1007/s11367-017-1330-y

Sari, D. A. P., Nikmah, M., & Sasongko, N. A. (2023). Life Cycle Assessment in the Production Process of Crude Palm Oil (Cpo) on Palm Oil Plantation and Mills. International Journal of GEOMATE, 25(111), 177–184. https://doi.org/10.21660/2023.111.s8616 DOI: https://doi.org/10.21660/2023.111.s8616

Siregar, K., Ichwana, Nasution, I. S., Sholihati, Sofiah, I., & Miharza, T. (2020). Implementation of Life Cycle Assessment (LCA) for oil palm industry in Aceh Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 542(1). https://doi.org/10.1088/1755-1315/542/1/012046 DOI: https://doi.org/10.1088/1755-1315/542/1/012046

Siregar, K., Tambunan, A. H., Irwanto, A. K., Wirawan, S. S., & Araki, T. (2015). A Comparison of Life Cycle Assessment on Oil Palm (Elaeis guineensis Jacq.) and Physic Nut (Jatropha curcas Linn.) as Feedstock for Biodiesel Production in Indonesia. Energy Procedia, 65, 170–179. https://doi.org/10.1016/j.egypro.2015.01.054 DOI: https://doi.org/10.1016/j.egypro.2015.01.054

Stichnothe, H., & Schuchardt, F. (2011). Life cycle assessment of two palm oil production systems. Biomass and Bioenergy, 35(9), 3976–3984. https://doi.org/10.1016/j.biombioe.2011.06.001 DOI: https://doi.org/10.1016/j.biombioe.2011.06.001

Wahyono, Y., Hadiyanto, H., Budihardjo, M. A., & Adiansyah, J. S. (2020). Assessing the environmental performance of palm oil biodiesel production in indonesia: A life cycle assessment approach. Energies, 13(12). https://doi.org/10.3390/en13123248 DOI: https://doi.org/10.3390/en13123248

Zhao, J., Elmore, A. J., Lee, J. S. H., Numata, I., Zhang, X., & Cochrane, M. A. (2023). Replanting and yield increase strategies for alleviating the potential decline in palm oil production in Indonesia. Agricultural Systems, 210(July), 103714. https://doi.org/10.1016/j.agsy.2023.103714 DOI: https://doi.org/10.1016/j.agsy.2023.103714

Downloads

Article History

Submitted: 2024-01-18
Published: 2024-01-19
Pages: 15-23

PlumX Metrics

How to Cite

Maisarah, M., & Dian, R. (2024). Metode Life Cycle Assessment (LCA) Dalam Penilaian Dampak Lingkungan Industri Kelapa Sawit Untuk Kelapa Sawit Berkelanjutan. Tabela Jurnal Pertanian Berkelanjutan, 2(1), 15–23. https://doi.org/10.56211/tabela.v2i1.452