Deteksi Kantuk Pengemudi Berdasarkan Keterbukaan Mata Menggunakan Model Ringan dari Spatiotemporal Pyramidal CNN

Abstract Views: 40   PDF Downloads: 14

Authors

  • Angga Maulana Purba Politeknik Negeri Cilacap, Cilacap
  • Fajar Mahardika Politeknik Negeri Cilacap, Cilacap
  • Satriawan Desmana Politeknik Negeri Cilacap, Cilacap
  • Nur Moniroh Politeknik Negeri Cilacap, Cilacap

DOI:

https://doi.org/10.56211/sudo.v4i4.1342

Keywords:

Computer Vision; Deep Learning; Driver Drowsiness Detection

Abstract

Keselamatan berkendara merupakan hal yang penting dan menjadi topik yang krusial diperbincangkan termasuk mendeteksi kantuk pengemudi. Dalam Computer Vision salah satu pendekatan yang dilakukan adalah mendeteksi kedipan mata pengemudi. Penelitian tahun 2022 menunjukkan hasil yang baik dalam penggunaan Pyramidal Bottleneck CNN untuk mempelajari fitur spatio dan temporal pada kedipan mata. Kemudian tahun 2023 dikembangkan model yang lebih ringan dengan Depth-wise Separable Convolution, sehingga parameter latih bisa diperkecil. Oleh karena itu, Penelitian ini bertujuan mengadaptasi arsitektur tersebut untuk kasus keterbukaan mata. Kedipan mata berlangsung cukup singkat dan hanya sepersekian detik, sehingga belum cukup membantu untuk mendeteksi kantuk. Model tersebut berhasil dilatih pada data primer yang terbatas dan dibandingkan dengan model baseline. Model terbaik secara keseluruhan menghasilkan F1 score 0.75, Precision 0.63, dan Recall 0.93. Model tersebut bisa berjalan diatas CPU dengan rata-rata 12 FPS (Frame Per Second). Hasil recall yang cukup tinggi menunjukkan model tersebut bisa menangkap momen mata tertutup cukup banyak, hal ini cukup krusial karena kehilangan momen mata tertutup akan fatal akibatnya, meskipun harus mengorbankan precision atau masih tinggi false positive-nya.

Downloads

Download data is not yet available.

References

National Center for Statistics and Analysis, “Overview of Motor Vehicle Traffic Crashes in 2022,” Washington, D.C., 2024.

R. Rahmadiyani and A. widyanti, “Prevalence of drowsy driving and modeling its intention: An Indonesian case study,” Transp Res Interdiscip Perspect, vol. 19, p. 100824, May 2023, doi: 10.1016/j.trip.2023.100824. DOI: https://doi.org/10.1016/j.trip.2023.100824

B. Fu, F. Boutros, C.-T. Lin, and N. Damer, “A Survey on Drowsiness Detection -- Modern Applications and Methods,” Aug. 2024. DOI: https://doi.org/10.1109/TIV.2024.3395889

S. Bakheet and A. Al-Hamadi, “A Framework for Instantaneous Driver Drowsiness Detection Based on Improved HOG Features and Naïve Bayesian Classification,” Brain Sci, vol. 11, no. 2, p. 240, Feb. 2021, doi: 10.3390/brainsci11020240. DOI: https://doi.org/10.3390/brainsci11020240

Md. T. A. Dipu, S. S. Hossain, Y. Arafat, and F. B. Rafiq, “Real-time Driver Drowsiness Detection using Deep Learning,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 7, 2021, doi: 10.14569/IJACSA.2021.0120794. DOI: https://doi.org/10.14569/IJACSA.2021.0120794

N. T. L. Anh, N. G. Bach, N. T. T. Tu, E. Kamioka, and P. X. Tan, “Spatiotemporal Pyramidal CNN with Depth-Wise Separable Convolution for Eye Blinking Detection in the Wild,” Journal of Image and Graphics, vol. 11, no. 4, pp. 367–375, Dec. 2023, doi: 10.18178/joig.11.4.367-375. DOI: https://doi.org/10.18178/joig.11.4.367-375

S. E. Bekhouche, I. Kajo, Y. Ruichek, and F. Dornaika, “Spatiotemporal CNN with Pyramid Bottleneck Blocks: Application to eye blinking detection,” Neural Networks, vol. 152, pp. 150–159, Aug. 2022, doi: 10.1016/j.neunet.2022.04.010. DOI: https://doi.org/10.1016/j.neunet.2022.04.010

F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” Apr. 2017. DOI: https://doi.org/10.1109/CVPR.2017.195

G. Hu et al., “Towards Real-time Eyeblink Detection in The Wild:Dataset,Theory and Practices,” Dec. 2019, doi: 10.1109/TIFS.2019.29599778. DOI: https://doi.org/10.1109/TIFS.2019.2959978

C. Lugaresi et al., “MediaPipe: A Framework for Building Perception Pipelines,” Jun. 2019.

A. G. Sawant, S. S. Kamble, R. S. Kanade, R. N. Kanugo, T. A. Kapse, and K. A. Bhapse, “A Real-Time Driver Drowsiness Detection System Using MediaPipe and Eye Aspect Ratio,” Nov. 17, 2025, arXiv: arXiv:2511.13618. doi: 10.48550/arXiv.2511.13618.

F. Safarov, F. Akhmedov, A. B. Abdusalomov, R. Nasimov, and Y. I. Cho, “Real-Time Deep Learning-Based Drowsiness Detection: Leveraging Computer-Vision and Eye-Blink Analyses for Enhanced Road Safety,” Sensors, vol. 23, no. 14, p. 6459, Jul. 2023, doi: 10.3390/s23146459. DOI: https://doi.org/10.3390/s23146459

S. Prusty, S. Patnaik, and S. K. Dash, “SKCV: Stratified K-fold cross-validation on ML classifiers for predicting cervical cancer,” Frontiers in Nanotechnology, vol. 4, Aug. 2022, doi: 10.3389/fnano.2022.972421. DOI: https://doi.org/10.3389/fnano.2022.972421

M. Fauzan Ridho, Fransiskus Panca, Welly Yandi, and Almeera Amsana Rachmani, “Drowsiness Detection in the Advanced Driver-Assistance System using YOLO V5 Detection Model,” ELECTRON Jurnal Ilmiah Teknik Elektro, vol. 5, no. 1, May 2024, doi: 10.33019/electron.v5i1.136. DOI: https://doi.org/10.33019/electron.v5i1.136

Z. Wang, K. Yao, and F. Guo, “Driver Attention Detection Based on Improved YOLOv5,” Applied Sciences, vol. 13, no. 11, p. 6645, May 2023, doi: 10.3390/app13116645. DOI: https://doi.org/10.3390/app13116645

S. LIU, Y. WANG, Q. YU, J. ZHAN, H. LIU, and J. LIU, “A Driver Fatigue Detection Algorithm Based on Dynamic Tracking of Small Facial Targets Using YOLOv7,” IEICE Trans Inf Syst, vol. E106.D, no. 11, p. 2023EDP7093, Nov. 2023, doi: 10.1587/transinf.2023EDP7093. DOI: https://doi.org/10.1587/transinf.2023EDP7093

K. Anam, “Early Stopping on CNN-LSTM Development to Improve Classification Performance,” Journal of Applied Data Sciences, vol. 5, no. 3, pp. 1175–1188, Sep. 2024, doi: 10.47738/jads.v5i3.312. DOI: https://doi.org/10.47738/jads.v5i3.312

Downloads

Article History

Submitted: 27-10-2025
Published: 12-01-2026
Pages: 355-366

PlumX Metrics

How to Cite

Purba, A. M., Mahardika, F., Desmana, S., & Moniroh, N. (2026). Deteksi Kantuk Pengemudi Berdasarkan Keterbukaan Mata Menggunakan Model Ringan dari Spatiotemporal Pyramidal CNN. Sudo Jurnal Teknik Informatika, 4(4), 355–366. https://doi.org/10.56211/sudo.v4i4.1342